[LEADERG AI ZOO] Jupyter-Image-Object-Detection-CSPResNeXt50-PANet-SPP-CPP

Language:

繁體中文

 

 

 

[Introduction]

 

 

This solution can be applied to factory defect detection, medical image analysis, biological image analysis, industrial safety image analysis, mask image analysis, etc. 

 

 

 

[Instructions]

 

 

1_annotation_pascal_voc_xml.ipynb

 

Open the marking software. Prepare a png or jpg image for annotation. It is recommended that the image has the same aspect ratio. 

 

 

 

2_prepare_config_file.ipynb

 

Setting parameters. classes= 4 : The number of detection classes.

 

Open data/csresnext50-panet-spp-original-optimal.cfg, search for "classes=", under anchors =, there are 3 places where you need to set the number of categories.

 

Then search for #filters =(classes + 5)x3 #255, modify the filters= below this string, for example : 4 categories, then filters=27, there are 3 places to be set. 

 

To set the category name, please set the category name in data/label.names. The category name must be exactly the same as the category name when labeling. 

 

 

 

3_convert_yolo_format.ipynb

 

The labeled converted into yolo voc xml format.

 

 

 

4_prepare_train_txt.ipynb

 

Prepare a list of training images.

 

  • image_path = "data/train/images": Training image path.
  • txt = "data/train.txt": The output training image list. 

 

 

 

5_prepare_val_txt.ipynb

 

To prepare the verification image list.

 

  • image_path = "data /val/ images": verification image path.
  • txt = "data/val.txt": The output verification image list. 

 

 

 

99_calculate_anchors.ipynb

 

Please remember to execute this ipynb before training. -width 608 -height 608 is the size of the image to be trained (can be modified).

If the image is not in size, it will be scaled. It is recommended that the aspect ratio of the image is the same. 

 

After execution, please copy the 

anchors =  62, 99,  79,223, 160,192,  73,469, 424,111, 331,225, 254,369, 151,640, 315,603

 

Paste this group of numbers on all anchors in data/csresnext50-panet-spp-original-optimal.cfg, there are three places that need to be modified. Next, modify width=608 and height=608 in cfg, which need to be the same as the value set by ipynb. 

 

 

 

6_train_CPU.ipynb

6_train_GPU.ipynb

 

For training, if the device supports GPU accelerated computing, please select 6_train_GPU, otherwise, please select 6_train_CPU.

 

model/csresnext50-panet-spp-original-optimal_best.weights :Continue training with this model. If you do not continue, please delete this parameter. 

 

os.system("start src/darknet/build/darknet/x64/darknet_no_gpu.exe detector train data/voc.data data/csresnext50-panet-spp-original-optimal.cfg model/csresnext50-panet-spp-original-optimal_best.weights -map -clear")

 

 

 

7_inference_CPU.ipynb

7_inference_GPU.ipynb

 

Inferring a single image. 

 

  • model/csresnext50-panet-spp-original-optimal_best.weights : Inferred model. 
  • data/test/images/inclusion-2.jpg : Inferred image.
  • -thresh 0.75 : The threshold of inference. 

 

 

 

8_inference_webcam_CPU.ipynb

8_inference_webcam_GPU.ipynb

 

Use webcam inference. -c 0 is the webcam device id. 

 

 

 

9_inference_folder_1_CPU.ipynb

9_inference_folder_1_GPU.ipynb

 

Infer all images in the folder. 

 

  • image_path = "data/test/images" : Inference folder (jpg, png). 
  • model_path = "model/csresnext50-panet-spp-original-optimal_best.weights" : Inferred model. 

 

 

 

10_inference_api_CPU.ipynb

10_inference_api_GPU.ipynb

11_inference_api_browser.ipynb

 

Inference API, run 10_inference_api_CPU.ipynb to open the server, and then run 11_inference_api_browser.ipynb, jump out of the browser, you can select a picture for inference.  

 

  • --port 8801 : The opened port. 
  • --model_file model/csresnext50-panet-spp-original-optimal_best.weights : Inferred model. 
  • --threshold 0.7 : Inference threshold, the higher the value, the stricter the similarity. 

 

 

 

99_auto_labeling_GPU.ipynb

 

Use the trained model to infer, and automatically mark the voc xml format. 

 

  • image_path = "data/auto_labeling/image" :The image folder to be annotated.
  • model_path = "model/csresnext50-panet-spp-original-optimal_best.weights": The model to be inferred. 
  • output_folder = 'data/auto_labeling/annotation': The path of the output annotation file. 

 

 

inference.png  

 

 

Contact Us and How to Buy

Welcome to contact us. Please refer to the following link:
https://www.leaderg.com/article/index?sn=11059

Recommended Article

1.
LEADERG App4AI (App for AI, AI Software, No Coding, Windows User Interface, AI Model Zoo, Deep Learning, Machine Learning)

2.
LEADERG AI Zoo (AI Algorithms, Code for AI, Code4AI, Less Coding, Save 90% of Development Effort, Jupyter Lab UI, AI Model Zoo, Machine Learning, Big Data)

3.
LEADERG AI Computer (Deep Learning, PC, workstation, server, NVIDIA GPU, TESLA A100, RTX-3090-24G, Intel VPU, GPU Server)

4.
LEADERG AI Education

Thanks for our customers

Taiwan University, Tsing Hua University, Yang Ming Chiao Tung University, Cheng Kung University, Taipei Medical University, Taipei University of Nursing and Health Sciences, National Chung Hsing University, Chi Nan University, Ilan University, United University, Defence University, Military Academy, Naval Academy, Feng Chia University, Chang Gung University, I-Shou University, Shih Chien University, Taiwan University of Science and Technology, Taichung University of Science and Technology, Yunlin University of Science and Technology, Chin-Yi University of Science, Formosa University, Pintung University of Science and Technology, Kaohsiung University of Science and Technology, Chaoyang University of Technology, Ming Chi University of Technology, Southern Taiwan University of Science and Technology, China University of Technology, Gushan Senior High School, Taipei Veterans General Hospital, Chang Gung Medical Foundation, Tzu Chi Medical Foundation, E-Da Hospital, Industry Technology Research Institute, Institute for Information Industry, Chung-Shan Institute of Science and Technology, Armaments Bureau, Ministry of Justice Investigation Bureau, Institute of Nuclear Energy Research, Endemic Species Research Institute, Institute of Labor, Occupational Safety And Health, Metal Industries Research & Development Centre, Taiwan Instrument Research Institute, Automotive Research & Testing Center, Taiwan Water Corporation, Taiwan Semiconductor Manufacturing Co., Ltd., United Microelectronics Corp., Nanya Technology, Winbond Electronics Corp., Xintec Inc., Arima Lasers Corporation, AU Optronics Corporation, Innolux Corporation, HannStar Display Corporation, Formosa Plastics Group., Formosa Technologies Corporation, Nan Ya Plastics Corp., Formosa Chemicals & Fibre Corporation, Chinese Petroleum Corporation, Logitech, ELAN Microelectronics Corp., Lextar Electronics Corporation, Darfon Electronics Corp., WPG Holdings, Mirle Automation Corporation, Symtek Automation Asia Co., Ltd, ChipMOS Technologies Inc., Dynapack International Technology Corporation, Primax Electronics Ltd., Feng Hsin Steel, China Ecotek, Grade Upon Technology Corp., AAEON Technology Inc., Stark Technology, Inc., Horng Terng Automation Co., Ltd., Zhen Ding Technology Holding Ltd, Boardtek Electronics Corporation, MiTAC International Corporation, Allion Labs, Inc., Sound Land Corp., Hong Hu Tech, etc.